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A B S T R A C T

The irregularities of the world ensure that each interaction we have with a concept is unique. In order to
generalize across these unique encounters to form a high-level representation of a concept, we must draw on
similarities between exemplars to form new conceptual knowledge that is maintained over a long time. Two
neural similarity measures — pattern robustness and encoding-retrieval similarity — are particularly important
for predicting memory outcomes. In this study, we used fMRI to measure activity patterns while people encoded
and retrieved novel pairings between unfamiliar (Dutch) words and visually presented animal species. We address
two underexplored questions: 1) whether neural similarity measures can predict memory outcomes, despite
perceptual variability between presentations of a concept and 2) if pattern similarity measures can predict sub-
sequent memory over a long delay (i.e., one month). Our findings indicate that pattern robustness during
encoding in brain regions that include parietal and medial temporal areas is an important predictor of subsequent
memory. In addition, we found significant encoding-retrieval similarity in the left ventrolateral prefrontal cortex
after a month’s delay. These findings demonstrate that pattern similarity is an important predictor of memory for
novel word-animal pairings even when the concept includes multiple exemplars. Importantly, we show that
established predictive relationships between pattern similarity and subsequent memory do not require visually
identical stimuli (i.e., are not simply due to low-level visual overlap between stimulus presentations) and are
maintained over a month.
1. Introduction

We often interact with the same concepts throughout our lives, but we
rarely encounter a concept in the same way each time. The definition of
“concept” has taken many forms over the centuries (Smith and Medin,
1981), but one of its key characteristics is helping to efficiently connect
the varied featural information associated with a particular item,
distributed largely across occipital and temporal regions (Tyler et al.,
2004; Tyler and Moss, 2001). The concept of “giraffe,” for instance, is
connected to features such as tall, spotted, and animate, as well as its
semantic label. To effectively understand and recognize a “giraffe”, a
person must generalize low-level perceptual differences that are irrele-
vant to the core concept (such as small variations in coloring or size) and
retain this knowledge over a long period of time.

Successful memory retrieval can be predicted based on similarity in
patterns of neural activity. This is true across presentations during
gy, University of Pittsburgh, Pitts

0
14 May 2020; Accepted 5 June

evier Inc. This is an open access a
encoding (pattern robustness; LaRocque et al., 2013), as well as between
encoding and retrieval (encoding-retrieval similarity, ERS; Ritchey et al.,
2013). When information is first encoded into memory, the robustness
(reliability over multiple trials) of the neural pattern during encoding
predicts how well the association is later remembered (LaRocque et al.,
2013; Xiao et al., 2016). The directionality of this robustness measure
(i.e., higher or lower similarity within, compared to than between, con-
ditions) can reflect two alternative forms of representation. The most
commonly examined direction (within> between) indicates that an item
is robustly represented relative to other items. The alternative direction
(between > within) has also been observed in the perirhinal cortex (PrC)
and parahippocampal cortex (PHC), though the reason for this is, as yet,
unknown (LaRocque et al., 2013). The second form of pattern similarity,
the degree of pattern reinstatement between encoding and retrieval
(within > between ERS), also positively predicts subsequent memory
performance (Kuhl and Chun, 2014; Lee et al., 2018; Mack and Preston,
burgh, PA, USA.
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2016; Ritchey et al., 2013; Xue et al., 2010).
These signatures of neural similarity have been linked to subsequent

memory for particularword-image associations (e.g., Ritchey et al., 2013;
Staresina et al., 2012; Wing et al., 2015), but truly having a concept in
memory requires a neural activity pattern that transcends specific images
to generalize across exemplars and view-points— a requirement that has
not been tested for pattern similarity. It is thus not known whether the
predictive ability of pattern similarity is restrained to simple and very
specific word-image episodic associations, or also applies to forming
conceptual knowledge, where words are associated with a variety of vi-
sual presentations (e.g., giraffes from multiple angles, exemplars, and
shading). A second feature of conceptual knowledge is its long-term
nature (Squire and Alvarez, 1995). Studies of pattern similarity and
memory have typically tested encoding/retrieval delays of 5 min (Kuhl
and Chun, 2014; Lee et al., 2018; Mack and Preston, 2016; Ward et al.,
2013) or closer to an hour (Xiao et al., 2016; Xue et al., 2010), with only
occasional delays of up to a week (Tompary and Davachi, 2017; Wire-
bring et al., 2015), leaving uncertainty over whether any conceptual
pattern similarity would maintain a relationship with subsequent mem-
ory across a longer time period, such as a month. Here, we investigate
how two forms of pattern similarity – pattern robustness and ERS –

predict subsequent memory for novel word-item associations, where an
association cannot be accounted for by a single image (and associated
low-level features), and where memory is tested one month after
encoding.

The question of whether neural signatures of successful memory
encoding are linked to low-level visual features (or allow cross-image
generalization) is particularly critical for analysis approaches that draw
on multi-voxel patterns, which can pick-up on visually-specific predictors
of subsequent memory (Kuhl and Chun, 2014; Lee et al., 2018; Mack and
Preston, 2016; Ward et al., 2013). Unlike univariate approaches (Cou-
tanche, 2013), multivariate analyses are sensitive to differences in visual
stimuli with great specificity, including at the superordinate level (e.g.,
birds vs. mammals; Connolly et al., 2012). Indeed, at a givenmoment, the
brain represents visual stimuli at multiple levels of granularity. For
example, when one retrieves memory for a known concept such as a
carrot, its perceptual features, such as its shape and color information are
represented in the lateral occipital complex (LOC) and V4, respectively,
while its object-level representation is elsewhere (Coutanche and
Thompson-Schill, 2015). This is in line with the hub-and-spoke model of
semantic memory (Lambon Ralph, 2014), which suggests the memory for
a known concept is encoded within regions that represent their features
(“spokes”), as well as in a higher-level hub, such as the anterior temporal
lobe (ATL) and angular gyrus (AG) (Lambon Ralph, 2014; Lambon Ralph
et al., 2017).

With the increased sensitivity in multi-voxel patterns, new method-
ological considerations arise. With the ability to detect information at the
single-image level (Kay et al., 2008), it becomes necessary to actively
examine whether a memory-relevant metric of pattern similarity is
drawing on such single-image representations, or more generalizable
cross-image concepts, not least because visual features at the image-level
can predict the memorability of a stimulus (Koch et al., 2019). To
examine neural representations for concepts, rather than images, it is
necessary to take efforts to ensure that robustness and ERS effects reflect
more than overlapping low-level visual patterns, which cannot be
ruled-out from past studies where associations are learned with just one
image across all encoding and retrieval trials (Lee et al., 2018; Mack and
Preston, 2016; Ward et al., 2013; Xue et al., 2010). In this study, we aim
to mitigate perceptually-driven effects by examining ERS of the same
concept (e.g., a species of bird) from different visual angles (e.g., standing
face-forward; sitting looking to the side) and exemplars (different
members of the species). By incorporating diverse images into the
concept being learned, we decrease the likelihood that effects are driven
by perceptual similarity between encoding trials or between encoding
and retrieval, and instead test for image-invariant conceptual represen-
tations, leading to the hypothesis that we will observe ERS in regions
2

relevant to conceptual processing (i.e., semantic hubs, ATL and AG).
The shift from images to concepts brings an additional consideration

in the form of semantic granularity, such as a concept’s item- (e.g.,
“sparrow”) and superordinate- (e.g., “bird”) levels, to consider just two. A
person’s ability to access a learned concept through these dimensions is
important for memory, with some levels being remembered, while others
are not (Lee et al., 2018). To foreshadow our findings, our results indicate
that regions of the brain show robustness and ERS that is predictive of
subsequent memory at a relatively fine level of analysis (e.g., bird vs.
mammal). This itself is a unique finding given that it is more common to
examine pattern similarity at much coarser levels of granularity (e.g.,
faces vs. objects vs. scenes; Lee et al., 2018). Given our success at this fine
level of granularity, we followed up our superordinate-level analyses
with additional analyses at an even finer level (e.g., bird A vs. bird B) to
ask whether similarity at the two levels converge or diverge.

Most studies investigating pattern robustness and ERS have also
relied on demonstrating a maintenance of patterns over the course of a
few minutes (e.g., Kuhl and Chun, 2014; Lee et al., 2018; Mack and
Preston, 2016; Wirebring et al., 2015) or several days (e.g., Tompary and
Davachi, 2017). One study investigated neural similarity between
encoding and retrieval over a longer time span (i.e. 2-6 weeks), but did so
using a fear conditioning paradigm, a type of associative learning that
differs from declarative memory in a number of respects (Coutanche and
Thompson-Schill, 2012; Visser et al., 2013). Importantly, the typical time
span examined in these studies is relatively restricted compared to the
timespan of a typical memory, particularly given that the neural basis for
memories can continue to change for weeks, months and even years after
initial encoding (Squire and Alvarez, 1995). Our study, on the other
hand, tests patterns after a longer delay period (i.e., one month), which is
also more aligned with the focus on longer-term conceptual processing,
rather than word-image episodic associations. The timeline of pattern
similarity effects is particularly important to consider when examining
the encoding of novel (i.e., unfamiliar) stimuli. Although previously
familiar stimuli will have existing representations in memory that can
help support new associations being formed in an episodic memory task,
novel stimuli (e.g., an unfamiliar word and object) will not (van Kesteren
et al., 2012). Here, we present participants with pairings of novel words
and unfamiliar animals, to examine how representations are first formed,
unlike prior studies that examined associations between familiar con-
cepts. This further motivates the importance of examining longer
time-courses than prior ERS studies, to allow for both item- and
association-based memories to form and be consolidated over time.

In this study, we scanned individuals using functional magnetic
resonance imaging (fMRI) to probe the information present in multi-
voxel patterns as people encoded 60 pairs of novel Dutch words and
unfamiliar animals, and later retrieved the pairings one month later.
Based on our design of incorporating visual images and novel words, we
hypothesized that regions associated with high-level visual and semantic
level representations (e.g., VT) would contain patterns predictive of
subsequent memory, as would the visual word form area (VWFA), which
contains patterns that distinguish known words from non-words (e.g.,
Carlos et al., 2019). Regions in the medial temporal lobe (HC, PHC, PrC),
the left ventrolateral prefrontal cortex (vlPFC), andmedial parietal cortex
(MPC) were also predicted to show ERS due to their involvement in
memory encoding and retrieval (Badre andWagner, 2007; Davachi et al.,
2003; Hutchinson et al., 2009; Rugg and King, 2018; Staresina et al.,
2012; Wagner et al., 2016). Finally, we did not expect that early visual
cortex (EVC) would show significant ERS, based on the higher-level
conceptual ERS we examined, which is encoded in multi-voxel patterns
later in the ventral stream (Coutanche et al., 2016).

2. Materials and methods

2.1. Participants

Data from 22 right-handed participants (female ¼ 14; male ¼ 8; Age:



H. Bruett et al. NeuroImage 219 (2020) 117030
Mean (M)¼ 25.3, standard deviation (SD)¼ 5.0) were collected over the
course of three sessions. The first two sessions occurred on consecutive
days, and the final session took place approximately one month later
(range ¼ 24–44 days after the first session). All participants provided
written informed consent at the start of each day of data collection and
were compensated for their time. At the start of the first session, par-
ticipants completed a demographics questionnaire and color blindness
test. All participants received perfect scores on the color blindness test
and were free of psychiatric, neurological, learning, and attention dis-
orders. All participants were native English speakers who did not learn
any languages other than English in their home growing up and had no
prior experience with Dutch or German languages. Two participants’
data were removed due to attrition on the final day of the study (giving n
¼ 20). All procedures were approved by the University of Pittsburgh
Institutional Review Board. Any data associated with this article will be
made available by reasonable request in a way that complies with pol-
icies of the University of Pittsburgh Institutional Review Board.

2.2. Design

Session I (approximately 1 h) consisted primarily of fMRI data
collection (see Fig. 1), including an anatomical scan, localizer run, and
two functional runs of encoding associations in Set 1. After scanning,
participants completed a cued recall task. Session II (approximately 2 h)
incorporated retrieval of the prior day’s set of associations, followed by
encoding associations from Set 2, while EEG data was collected (not
analyzed here). Participants then completed a cued recall task for Set 2.
Session III (approximately 1.5 h) consisted of another fMRI scan, with an
anatomical scan, three runs of a retrieval task for Set 1, followed by three
runs of a retrieval task for Set 2. After the scan, participants completed a
categorization task (not analyzed here) and final survey of pre-
experimental familiarity with the animals on a scale of 1 (not at all
familiar) to 7 (very familiar), as well as typing the name of animals if they
knew them. For the purposes of this paper, we will present data from
fMRI sessions (I and III) only.
Fig. 1. Task layout and example trials for a given word-animal pair. A) Overview of
analyzed here. B) Encoding showing two trials for a pair. Three dots indicate othe
is “match.”

3

2.3. Stimuli

2.3.1. Images
Twenty-six unique images (25 for the encoding and retrieval tasks,

one for cued recall) of 40 animals were administered. Each image was
cropped to the center of a white background of 252 � 252 pixels with a
resolution of 72 pixels/inch. Images of each animal species (e.g., shoe-
bill) presented different individual animals (i.e., distinct individuals)
from different viewpoints (see Fig. 1). Animals were selected based on
the low likelihood that participants were familiar with their appearance
(established through norming from prior studies; Coutanche and Koch,
2018; Koch et al., 2020). Participants’ prior (un)familiarity with the
species was verified through the final survey, in which participants were
asked to provide the English name for each species (if known). The an-
imals consisted of ten birds, ten fish, six insects, twelve mammals, and
two reptiles.

2.3.2. Words
The word materials were 40 Dutch words, three to eight letters in

length (M ¼ 5.78, SD ¼ 1.24), based on the normalized dataset from
Tokowicz et al. (2002). All words were concrete nouns and had one
English translation. Form similarity between Dutch words and their En-
glish translation was low (M ¼ 1.40, SD ¼ 0.32; range ¼ 1–2.38) on a
scale of 1 (“low similarity”) to 7 (“high similarity”), as rated by 24
Dutch-English bilinguals.
2.4. Tasks

The trial order within all tasks was pseudorandomized in advance and
made to follow the order determined by the jitter optimization program,
Optseq 2 (Greve, 2002). The set of words included in Set 1 and Set 2 were
counterbalanced from Sets 1 and 2 across participants. Each fMRI run
began with 2 TRs of fixation and ended with 6 TRs (localizer) or 5 TRs
(encoding, retrieval) of fixation.

2.4.1. Localizer
We functionally localized the VWFA with a words > non-words
experimental sessions. Set 2 stimuli (faded) were encoded during EEG and not
r intervening trials for other pairs. C) Retrieval trial where the correct answer
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contrast. During the localizer task, participants were presented with a
letter string and prompted to indicate, by pressing one of three fingers,
whether the letter string was a non-English (e.g., vlees) or English word,
whether it was larger (e.g., elephant) or smaller (e.g., key) than a shoe-
box. This task was used to drive semantic processing of the presented
words. Real word stimuli referred to either animals (animate) or inani-
mate objects. The localizer consisted of one run of 80 trials and was
preceded by six practice trials.

2.4.2. Encoding
Participants were told they would be learning Dutch labels of various

animals. Prior to the session, two sets of associations were created, each
consisting of 20 unique Dutch word-animal pairings, the concepts
learned in our study (counterbalanced across participants). Each partic-
ipant was presented with associations from one of the counterbalanced
sets. Participants passively viewed images of animals (described above)
and Dutch labels over the course of two functional runs in the scanner.
Each trial consisted of 200 ms of fixation, 1500 ms of the animal image,
an interstimulus interval (ISI) of 300 ms, and 800 ms of the Dutch label,
centrally located on the screen. All animals were presented once per
iteration before there was a repeat, with at least four trials separating any
repeats (at the end and start of the iterations).

2.4.3. Retrieval
Participants viewed trials in which images of animals were followed

by a Dutch label. Participants responded as to whether or not the animals
matched the label (based on the prior encoding). All mismatch pairings
were consistent for each presentation (e.g., if the shoebill was labeled as
“citreon” during encoding, its mismatch word might be “kicker”, but no
other label) to ensure that participants could not use a continually
changing foil as a cue (i.e., select the word that does not change). Trials
began with 200 ms of fixation and an image presentation for 1500 ms.
After a 300ms ISI, the Dutch label appeared, and participants had 800ms
to respond. Trials ended when participants responded or once 800 ms
had passed. To ensure that participants were comfortable with the task,
the first retrieval task in the session was preceded by 10 practice trials.
Forty match and 40 mismatch trials appeared during each run. All ani-
mals were presented once per iteration before there was a repeat, with at
least four trials separating any repeats (at the end and start of the
iterations).

2.4.4. Cued recall
After leaving the scanner, participants first viewed animal images that

they had viewed previously during encoding. After each image dis-
appeared, participants typed the name of the encoded Dutch label and
pressed enter to start the next trial.

2.4.5. Categorization
As an additional test of participants’ encoding of the Dutch labels and

animals, a categorization task on Session III presented triads of animal
names. Each triad consisted of two already familiar animals (e.g.,
grasshopper and snake), along with a word encoded during either Session
I or Session II (e.g., fles). Two of the animals came from the same taxo-
nomic group (fish, bird, reptile, mammal, and insect) with the third an-
imal from a different group. Participants were told to indicate which
animal did not match the taxonomic category of the other two. Each
Dutch label was shown three times in different triads. The new Dutch
label was the odd one out in one third of the trials. To establish the words
in the triads, two sets were generated, randomly pairing existing animals
within their taxonomic category to create 120 triads each. Existing ani-
mals were taken from the following number of animal categories: birds¼
51, reptiles ¼ 18, mammals ¼ 63, fish ¼ 30, and insects ¼ 26. These
existing animals were not shownmore than twice per participant. Results
from this test were not analyzed and will not be discussed further.
4

2.4.6. Final survey
At the end of the final session, participants provided the English name

of each of the animals if they knew it, wrote if they had a strategy for
remembering the animal names, and whether they rehearsed the animals
during the delay between the three sessions.

2.5. Data acquisition

Participants were scanned using a Siemens 3-T head only Allegra
magnet and standard radio-frequency coil equipped with mirror device
to allow for fMRI stimuli presentation. Whole-brain imaging was con-
ducted. T1-weighted images were acquired at the start of both sessions
(TR ¼ 1.540 s, TE ¼ 3.04 s, voxel size ¼ 1.0 � 1.0 � 1.0 mm). Localizer
data collection took place over one functional run (TR¼ 2.25 s, TE¼ 25),
encoding over 2 functional runs (TR ¼ 2.8 s, TE ¼ 25), and retrieval over
3 functional runs (TR ¼ 2.8 s, TE ¼ 25). All functional runs employed
voxel sizes of 3.125 � 3.125 � 3.125 mm. A predetermined jitter was
used in all functional runs. The optimal sequence was determined using
Optseq 2 (http://surfer.nmr.mgh.harvard.edu/optseq/) and an average
jitter length equivalent to the run’s TR length.

2.6. Data preprocessing

Anatomical images from Session III were registered to those collected
in Session I. Imaging data were preprocessed using the Analysis of
Functional NeuroImages (AFNI) software package (Cox, 1996).
Slice-time and motion corrections were applied to all functional images
so as to register them to a mean functional volume. A high-pass filter was
used to remove low-frequency trends below 0.01 Hz from all runs. For
multivariate analyses, betas were calculated with this data using the
Least Squares-Separate (LSS) method in a superordinate-wise and
item-wise fashion based on the onset time of the image appearing on the
screen (Mumford et al., 2012). Only match trials were included when
calculating betas during retrieval to ensure trials were as similar as
possible to those with which they were compared during encoding. All
encoding trials were modeled with epochs of 2.6 s. Retrieval encoding
trials were modeled with a variable epoch model to account for the
different trial lengths (based on when the subjects responded). The op-
tion stimtimes_am1 was used with AFNI’s 3ddeconvolve. If the subject
did not respond on a trial, the maximum possible trial length (2.6 s) was
included in the model. This produced a vector of beta coefficients for
each ROI reflecting the BOLD response to the superordinate category or
item, which was then subjected to multivariate analyses (described
below). The functional data was not smoothed prior to the multivariate
analyses. Classification analyses (see Supplementary Materials) used the
same preprocessing steps as the other multivariate analyses. For uni-
variate analyses, data were smoothed using a kernel with full width at
half maximum (FWHM) of 6 mm and regions were standardized to
Talairach space for group analyses (see Supplementary Materials).

2.7. Regions of interest

We identified 16 regions of interest (ROIs) for our analyses. To ac-
count for the number of ROIs included in our study, we divided our re-
gions into primary a priori primary ROIs, and exploratory secondary ROIs
in which neural analyses were corrected for multiple comparisons by
accounting for false discovery rate (FDR) using the Benjamini-Hochberg
(BH) Procedure (Benjamini and Hochberg, 1995). All neural data re-
ported for secondary ROIs are BH-corrected p-values. We used a sys-
tematic approach to decide which ROIs would be primary or secondary.
We first identified papers in the literature that tested encoded associa-
tions and found either pattern robustness or ERS that predicted subse-
quent memory performance. Our primary ROIs of interest were those
with significant results in these past studies: bilateral VT, vlPFC, PHC,
and HC (Kuhl et al., 2012; Staresina et al., 2012; Wing et al., 2015; see
Fig. 2). In addition, because many of the studies found significant effects

http://surfer.nmr.mgh.harvard.edu/optseq/


Fig. 2. Visualization of primary and secondary ROIs from a representative subject. The displayed VT ROI shows voxels from which the feature selection is conducted
(123 most animacy-responsive voxels; see Methods and Materials).
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in stimulus-sensitive cortex (Jonker et al., 2018; Koen et al., 2019; Ward
et al., 2013), we also included the VWFA, which is sensitive to word
stimuli. Our secondary ROIs were selected for exploratory analyses. The
PrC and AG were included to test for memory effects (Davachi et al.,
2003; Uncapher and Wagner, 2009), the ATL and EVC to test for super-
ordinate and item level effects (Devlin et al., 2002; Eger et al., 2008;
Pobric et al., 2010), and the MPC because it is related to long-term
retrieval (Bird et al., 2015). All ROIs were created in the right and left
hemisphere separately, except for the VWFA, which is left-lateralized
(McCandliss et al., 2003), the vlPFC, which is left-lateralized for se-
mantic retrieval (Badre and Wagner, 2007), and the VT and EVC, which
were examined bilaterally.

The HC, PHC, and MPC were created using FreeSurfer (Fischl et al.,
2002). The MPC consists of the precuneus, subparietal sulcus, and pos-
terior cingulate gyrus. The vlPFC ROI was created using BA44, BA45, and
BA47 from AFNI’s TT_Daemon atlas. The VT ROI was created by selecting
animate-sensitive voxels by choosing the 123 most-active voxels VT (in
either right or left hemisphere) for animate relative to inanimate words
in the functional localizer. EVC was defined by placing a 10 mm-radius
sphere on the calcarine sulcus. The ATL was defined using coordinates
reported in a previous study (10 mm-radius sphere at 41, 8, �17; �41, 8,
�17; Coutanche and Thompson-Schill, 2015). Although the localizer was
created to define the VWFA, it was not able to produce reliable
word-form sensitivity in most participants. As such, we defined the re-
gion according to coordinates reported in a past study (10 mm-radius
sphere at �42, �56, �12; Price and Devlin, 2003).

2.8. Behavioral

To evaluate behavioral performance on the cued recall task in a way
that accounts for the accuracy of typed responses (e.g., “citeon” is very
similar to the correct answer of “citreon”), we calculated the lexical
similarity between the word typed by the participant and the correct
word for the image shown, using an online resource of orthographic
similarity (van Orden, 1987; https://psico.fcep.urv.cat/utilitats/nim/en
g/graphsim.php). Performance on the recognition test was measured
by calculating d’ for each concept to account for both hits and false
alarms.

2.9. Pattern robustness

Pattern robustness was calculated between conditions during
5

encoding. At the superordinate level, item-level beta coefficients were
first averaged at this level for each run (e.g., for birds, all bird exemplar
patterns were averaged for run 1 and again for run 2). Pattern robustness
was measured as the difference between “within” and “between” simi-
larities. Within similarity was calculated for each superordinate level as
the correlation between matching superordinate level patterns from run
1 and run 2 (e.g., the bird pattern would be correlated between runs).
Values were Fisher-z corrected and averaged across all superordinate
levels. Between similarity was calculated in the same manner but across
groups (e.g., for birds, all bird patterns from one run with patterns for
other taxonomic groups in the other run). Trials were correlated across
(rather than within) runs to prevent any spurious correlations that might
occur by comparing trials in the same run (Mumford et al., 2014). Within
and between similarities were the Fisher-z corrected Pearson’s correla-
tion coefficients from these analyses (Kuhl et al., 2012; LaRocque et al.,
2013). Pattern robustness was calculated for each trial, as the difference
of within and between similarities. For group-level analyses, the super-
ordinate level analyses were averaged and tested against zero in a
one-sample t-test.

Item-level analyses were similar to the superordinate level analyses,
but with item-level beta coefficients (e.g., all shoebills, a type of bird)
averaged for each run and correlated between runs to calculate within
(e.g., shoebill - shoebill) and between (e.g., shoebill - other types of bird)
similarity. The between similarity was always calculated within the same
superordinate level (e.g., shoebill - other types of bird but not with
mammals) to remove any influence of taxonomic categories on this
measure.

2.10. Encoding-retrieval similarity

ERS was calculated at a superordinate level and item-level using
superordinate-level and item-level beta coefficients, respectively. For
superordinate analyses, the superordinate beta vector from encoding was
correlated with the superordinate vector from retrieval, Fisher-z cor-
rected, and then averaged. The correlated superordinate levels were
either identical (‘within’) or different (‘between’). Item-level analyses
correlated the item-level beta vectors during encoding and retrieval for
the same concepts (within; e.g., shoebill with shoebill) or different con-
cepts (between; e.g., shoebill with other birds). The correlations were
Fisher-z corrected and averaged for within or between. The ‘between’
similarity was subtracted from the within similarity to calculate the final
ERS difference scores for each superordinate level, which were compared

https://psico.fcep.urv.cat/utilitats/nim/eng/graphsim.php
https://psico.fcep.urv.cat/utilitats/nim/eng/graphsim.php


Fig. 3. Pattern robustness for superordinate analyses for primary (above) and
secondary (below) ROIs. Pearson’s r standardized with Fisher’s z. Error bars
represent standard errors of the mean. Circles represent means of the 18 par-
ticipants. Right and left hemispheres indicated by “R” and “L”, respectively. *p
< .05, **p < .01, ***p < .001.
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against zero in a group-wise one-sample t-test.

2.11. Behavioral regressions

To test whether the neural metrics related to subject’s behavioral
performance, all regions with significant neural findings for a given
measure (i.e., pattern robustness, ERS) were entered into two linear
mixed effects models, each predicting a measure of behavioral perfor-
mance: cued recall performance on Session I and recognition perfor-
mance on Session III. The neural measure was the predictor of interest in
the main model (pattern robustness or ERS), with the behavioral measure
serving as the dependent variable. Subject was included as a random
effect. Because pre-experimental familiarity has been shown to be an
important indicator of memory performance for word-image pairs
(Bruett et al., 2018), pre-experimental familiarity was included as a fixed
effect in all models. Change in AIC values were calculated to determine
statistical significance, where the null model contained all variables
except for the neural measure. This method produced results consistent
with those calculated when all variables were placed in one model and
significance was determined by examining the p-value associated with
the variable of interest. Plots of significant and marginally significant
regression models can be found in Supplementary Materials.

3. Results

3.1. Behavioral

Two participants were removed from analyses due to below-chance
behavioral performance on the Session II retrieval task (<50% recogni-
tion accuracy for Set 1 words), leaving 18 subjects for the final analyses.
Participants’ performance showed that they learned the word-animal
pairings, as reflected in the cued recall task in Session I (M ¼ 0.56, SD
¼0.43), the recognition task in Session II (d’M¼ 1.9, SD¼ 2.13), and the
recognition task in Session III (d’ M ¼ 1.5, SD ¼ 2.43). Participants were
generally unfamiliar with our animal stimuli prior to the study (on a 1
(not at all familiar) to 7 (very familiar) scale, M ¼ 2.5, SD ¼ 1.95). The
responses across all subjects covered the full range (1 through 7), justi-
fying our use of this measure in our regressions.

3.2. Pattern robustness

Pattern robustness is reflected in the overlap (similarity) of encoding
presentations at the item or superordinate level. Superordinate-level
pattern robustness for the primary ROIs are shown in Fig. 3. Significant
superordinate-level pattern robustness was present in the left HC (M ¼
0.082, t(17) ¼ 2.91, p ¼ .010), left PHC (M ¼ 0.062, t(17) ¼ 2.13, p ¼
.048), right PHC (M ¼ 0.086, t(17) ¼ 2.92, p ¼ .009), vlPFC (M ¼ 0.135,
t(17) ¼ 5.18, p < .001), with strongest robustness in stimulus-specific
ROIs, the VWFA (M ¼ 0.346, t(17) ¼ 9.62, p < .001) and VT cortex
(M ¼ 0.223, t(17) ¼ 8.91, p < .001). The right HC did not reach signif-
icance (p¼ .086). Of the secondary ROIs, the left AG (M¼ 0.208, t(17)¼
8.61, p < .001), right AG (M ¼ 0.176, t(17) ¼ 7.84, p < .001), EVC (M ¼
0.360, t(17) ¼ 9.30, p < .001), left MPC (M ¼ 0.152, t(17) ¼ 4.74, p <

.001), right MPC (M ¼ 0.168, t(17) ¼ 6.76, p < .001), left PrC (M ¼
0.111, t(17) ¼ 4.14, p ¼ .002), and right PrC (M ¼ 0.097, t(17) ¼ 2.72, p
¼ .037) showed significant superordinate-level robustness after correct-
ing for FDR. No other secondary ROIs were significant after correction
(see Supplementary Materials for full table).

In testing the relationship between pattern robustness and behavioral
performance (cued recall and recognition memory accuracy), only re-
gions with significant pattern robustness were examined. Of these re-
gions, Session III recognition memory performance was predicted by
superordinate-level pattern robustness in left vlPFC (β ¼ 2.13, SE ¼
0.99, ΔAIC ¼ 2.68, χ2 ¼ 4.68, p ¼ 0.031), left MPC (β ¼ 2.47, SE ¼ 0.92,
ΔAIC ¼ 5.15, χ2 ¼ 7.16, p ¼ 0.007), right PrC (β ¼ 1.95, SE¼ 0.83, ΔAIC
¼ 3.15, χ2 ¼ 5.16, p ¼ 0.023), and EVC (β ¼ 1.36, SE ¼ 0.66, ΔAIC ¼
6

2.32, χ2 ¼ 4.32, p ¼ 0.038). Recognition memory was marginally pre-
dicted by pattern robustness in the left PHC (β ¼ 1.13, SE¼ 0.65, ΔAIC ¼
1.09, χ2 ¼ 3.09, p ¼ 0.079). Session I cued recall performance was
marginally predicted by pattern robustness in the right AG (β ¼ 0.23, SE
¼ 0.12, ΔAIC ¼ 1.67, χ2 ¼ 3.67, p ¼ 0.055).

Because we saw superordinate-level pattern robustness effects, we
tested whether we could detect effects at an even finer level of granu-
larity by analyzing item-level robustness, with the caveat that signifi-
cantly fewer trials contributed to this analysis. Item-level robustness was
significant in the left PHC (M¼�0.041, t(17)¼�2.40, p¼ .028), but not
in other primary regions (ps> .353) or secondary regions (ps> .405 after
FDR correction). Left PHC item-level pattern robustness was not signifi-
cantly related to Session I cued recall or Session III recognition perfor-
mance (ps > .257).

3.3. Encoding-retrieval similarity

ERS is reflected in pattern overlap (similarity) between encoding and
retrieval. Superordinate-level ERS was significant in the left PHC (M ¼
�.041, t(17)¼�2.42, p¼ .027) and vlPFC (M¼ 0.018, t(17)¼ 2.61, p¼
.018), but no other primary ROIs (ps > .154; see Fig. 4). No secondary
ROIs had significant superordinate-level ERS after FDR-correction.

ROIs with significant superordinate-level ERS were tested as potential
predictors of Session 1 cued recall performance and Session III recogni-
tion memory. Superordinate-level ERS in the left PHC was marginally
predictive of Session III recognition memory (β ¼ 1.88, SE ¼ 0.50, ΔAIC
¼ 1.42, χ2 ¼ 3.42, p ¼ 0.064). ERS in other regions did not significantly



Fig. 4. ERS for superordinate analyses for primary (above) and secondary
(below) ROIs. Pearson’s r standardized with Fisher’s z. Error bars represent
standard errors of the mean. Right and left hemispheres are indicated by “R” and
“L”, respectively. *p < .05, **p < .01, ***p < .001.
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predict recognition memory (ps > .978) or cued recall performance (ps>
.117). Item-level ERS did not reach significance in any primary regions
(ps > .104) or secondary regions.

4. Discussion

In this study, we examined how two neural measures – pattern
robustness and ERS – predict memory for concepts across visually-varied
exemplars over an extended delay. By pairing each Dutch word with
multiple images of a novel animal species, we ensured that pattern
similarity effects were not driven by associations with low-level visual
similarities between instances of a single image. Superordinate-level
representations were examined through pattern robustness during
encoding and ERS.

To first understand how patterns at encoding predicted memory
performance, we measured pattern robustness across exemplars. A
number of regions showed significant pattern robustness that was
consistent across multiple exemplars (for each species), and across spe-
cies of the same taxonomic category. Importantly, pattern robustness in
many of these regions predicted memory performance after a month-long
delay, including the vlPFC, and two regions of medial temporal cortex -
right PrC and left PHC. These findings are consistent with past studies
showing that consistent encoding representations in these regions facil-
itates associative memory formation (LaRocque et al., 2013; Wagner
et al., 2016; Xue et al., 2010). Notably, pattern robustness in both the
right and left MPC also predicted subsequent memory, in line with the
MPC’s involvement in long-term retrieval (Bird et al., 2015; Lee et al.,
2018). Pattern robustness in EVC was also predictive of subsequent
memory. Past research has suggested that high-level visual regions
responsible for object categorization have long-range feedback loops to
early visual cortex. One study, for instance, found higher activity in EVC
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associated with category-level target detection despite the need for up-
stream semantic systems to define these targets, providing evidence for
these connections (Hon et al., 2009). Given that our effect was present at
the superordinate level, it is likely not representative of bottom-up early
visual processing of concepts (as otherwise it would also be observed at
the item-level), but instead likely reflects feedback mechanisms from
higher level regions (Hon et al., 2009; Luck et al., 1997) which is known
to affect multi-voxel patterns, as shown by the ability to decode visual
properties from associated words in EVC (Borghesani et al., 2016).
Finally, the right AG was the only region to marginally predict memory
on the day of the scan. This aligns with past findings of univariate
negative subsequent memory effects in the AG, where forgotten words
tend to show more activity than subsequently remembered words (Clark
and Wagner, 2003; Park et al., 2013), and pattern robustness measures
predict subsequent memory after 3 days (Wagner et al., 2016).

In addition to encoding, we were also interested in how pattern
similarity between encoding and retrieval predicted subsequent memory
for concepts, measured through ERS across varying exemplars. Two re-
gions, the left PHC and vlPFC, showed evidence of superordinate-level
ERS, and none showed evidence at the item level. Interestingly, the left
PHC, associated with both memory (Brewer et al., 1998; LaRocque et al.,
2013; Xiao et al., 2016) and high-level visual processing (Bonner et al.,
2016), showed superordinate-level ERS that was marginally related to
recognition memory one month after encoding. This is consistent with
other studies that have found the region to be particularly sensitive to
processing superordinate-level information, relative to other regions in
medial temporal cortex (Diana et al., 2008). Unexpectedly, the direc-
tionality of the PHC findings indicate that more negative ERS scores (i.e.,
between > within similarity) predicted improved memory performance.
Although this was not an anticipated direction, past studies have shown
that the directionality of pattern similarity (albeit for robustness) in this
region seems to depend on the stimulus viewed (LaRocque et al., 2013).
In particular, a past study showed negative directionality for living things
(i.e., faces, bodies) and positive directionality for non-living things (i.e.,
objects, scenes; LaRocque et al., 2013). Our negative direction for novel
animals is consistent with this; however, given the lack of similar findings
in other related studies, we note that caution should be taken in inter-
preting them at present. Future studies will want to investigate the role of
the left PHC in ERS more directly to understand how these patterns
benefit memory, and whether directionality interacts with the learned
concept or stimulus.

These findings are particularly interesting due to their contribution to
understanding the processing of concepts at multiple levels of abstraction
or semantic granularity. Concepts can be considered at multiple levels of
semantic granularity. One can think of a mammal, a dog, or their friend’s
pet, Gracie. Some levels might be forgotten over time, however. For
example, one might remember that their friend has a dog, but not
remember its name or its breed. Although it is clear that these levels exist,
their relationship in the brain remains to be fully understood.

Our findings begin to speak to the issue of semantic granularity by
demonstrating that superordinate level neural information is associated
with item-level memory. One possible reason for this is that different
levels of granularity may not be independent. This is consistent with a
recent study in which participants learned to associate pseudowords with
one of six categories of words (monkeys, donkeys, elephants, hammers,
wrenches, screwdrivers; Malone et al., 2016). After learning these re-
lationships, the representations of the pseudowords reflected the se-
mantic relationships that are expected of the six categories, both at the
basic and superordinate level. Importantly, during recognition, over-
lapping representations formed during encoding can be used to judge the
familiarity of test cues, where a higher match leads to better memory
(Hintzman, 1984). Given past findings that representations of concepts at
different levels of granularity are not independent, one explanation for
our findings may be that robust item- and category-level neural repre-
sentations were created during encoding. As such, at retrieval, those
items that had the most robust stored representations showed a higher
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match with the cue’s representation and were best remembered. Exam-
ining multiple levels of granularity using different neuroimaging analysis
methods (i.e., univariate and multivariate) will likely be fruitful in un-
derstanding these levels better in the future.

It is surprising and worth noting that our results did not show evi-
dence of ERS in the HC, given that this effect has been previously
observed (e.g., Liang and Preston, 2017; Mack and Preston, 2016). A
possible reason for this unexpected finding is the significant delay be-
tween encoding and retrieval. Although the HC is important for memory
encoding and retrieval, new information from encoding is consolidated
over time with sleep (Takashima et al., 2009). As a result, although HC
ERS may be important on a shorter time scale, before much consolidation
has occurred, our results suggest these patterns may change over longer
time scales. In addition, it has also been suggested that, relative to the
other regions of medial temporal cortex, there may be less superordinate
sensitivity to stimuli in the HC (LaRocque et al., 2013). Finally, alter-
native imaging sequences may provide additional insights into HC,
though often at the cost of reduced coverage. As we planned to collect
whole-brain analyses, we did not collect high resolution fMRI data, and
thus did not optimize in accordance with these constraints, which could
also explain our lack of HC findings.

Our study examined item-level pattern robustness and ERS to further
our investigation regarding semantic granularity. Our findings showed
evidence of pattern robustness at the item-level in the left PHC, consis-
tent with our finding at the superordinate level. This finding, though
preliminary, suggests that the encoding representations in PHC may be
important for multiple levels of semantic granularity, though future
studies will be needed before conclusions can be drawn. A limitation of
analysis at the item-level in this study was that each word-animal pairing
was only presented eight times during encoding (four presentations in
each of the two runs). Because the item-level analyses involved creating
average patterns in each run, only four trials contributed to the average
for each concept, so we were likely underpowered to detect item-level
effects in regions with a smaller effect size or large variance. For this
reason, it is not possible to directly compare item and superordinate
levels. We anticipate that a study featuring more presentations of con-
cepts might find stronger effects for pattern robustness and ERS, with
relationships to subsequent memory. Finally, we note that our study in-
cludes a sample of 18 subjects, which may limit our findings. Although
our sample size is consistent with other fMRI studies examining similar
processing (e.g., LaRocque et al., 2013; Ritchey et al., 2013), it is possible
that greater power may allow greater sensitivity in detecting item-level
differences.

The timing of our experimental trials was such that words and images
were presented close in time to one another. Because of this, one concern
might be whether hemodynamic overlap affects the interpretation of our
findings. For instance, the question arises whether the neural findings
reported reflect an abstraction of regularities within a category or
repeated word forms? We acknowledge that this question is valid;
however, we note that overlap at the superordinate level is relatively
small because each level contains multiple species, each with a different
word string. Additionally, neural patterns in certain regions were able to
predict subsequent recognition performance, but patterns in the VWFA
(which are most likely to represent word form) could not. We argue that
this is consistent with the interpretation that the reported neural patterns
do not simply represent word-form information, but instead reflect
higher-order semantic information, which in turn is associated with
memory outcomes. Finally, past findings demonstrate that some of these
regions are not associated with word processing. For example, in one
study, authors did not find activation differences in the left MPC when
retrieving words versus faces (Guerin and Miller, 2009). In addition, the
PrC has been shown to represent semantic distances between words in a
way that is not perceptually driven (Bruffaerts et al., 2013). These find-
ings support the claim that the effects we show here are at least not
driven entirely by word form.

This study provides evidence for how new concepts (with visually-
8

varying exemplars) are encoded and later retrieved on long time scales.
Our findings highlight the predictive relationship between superordinate
pattern robustness and conceptual memories after a month, and suggest
that parietal and medial temporal cortical regions may be particularly
important in this relationship.
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